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Abstract.

The causal dependences between the dynamics of three different coupled ocean-atmosphere basins, The North Atlantic, the

North Pacific and the Tropical Pacific region, NINO3.4, have been explored using data from three reanalyses datasets, namely

the ORA-20C, the ORAS4 and the ERA-20C. The approach is based on the Convergent Cross Mapping (CCM) developed

by Sugihara et al (2012) that allows for evaluating the dependences between observables beyond the classical teleconnection5

patterns based on correlations.

The use of CCM on these data mostly reveals that (i) the Tropical Pacific (NINO3.4 region) only influences the dynamics

of the North Atlantic region through its annual climatological cycle; (ii) the atmosphere over the North Pacific is dynamically

forcing the North Atlantic on a monthly basis; (iii) on longer time scales (interannual), the dynamics of the North Pacific and

the North Atlantic are influencing each other through the ocean dynamics, suggesting a connection through the thermohaline10

circulation.

These findings shed a new light on the coupling between these three different important regions of the globe. In particular

they call for a deep reassessment of the way teleconnections are interpreted, and for a more rigorous way to evaluate causality

and dependences between the different components of the climate system.

1 Introduction

In environmental sciences, statistical quantities are essential tools to characterize the properties of a system, the most familiar

of which are the mean, the variance, and the correlation in space or time. Correlations are very often associated with the notion

of dependences in climate sciences, assuming that a certain observable is influencing the one to which it is correlated. Although

it is true when dealing with a Gaussian linear system, the picture becomes far more complicated when dealing with a nonlinear20
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system. In particular for nonlinear deterministic dynamical systems, the correlation between observables is neither sufficient

nor necessary for causation or dependence between these observables, e.g. (Granger , 1969, 2003; Sugihara et al , 2012).

Teleconnections in the form of correlations between distant points in space are used in climate sciences in order to evaluate

the link of a dynamical process in some part of the world with a distant target. For instance, an important question nowadays

is to know whether the Tropical Pacific system forces the dynamics of the climate system in the extratropics. In this context,5

important teleconnections are found between events like El-niño or La-niña and the temperature and precipitation patterns

allover the World, e.g. (Fraedrich and Müller , 1992; Brönnimann , 2007; Lau , 2016). The origin of these teleconnections

for the North Atlantic and North Pacific is currently explained through the concept of atmospheric bridge that allows for the

transfer of information from one basin to another, e.g. (Sardeshmukh and Hoskins , 1988; Alexander et al , 2002; Yu and Lin

, 2016; Lau , 2016). This explanation assumes that there is a causality principle leading to these teleconnections, mostly going10

from the Tropical Pacific to the remote regions. This view originating from teleconnection patterns should however be taken

with care, since co-variability does not imply causation or inter-dependences as already mentioned above. Another possible

explanation of these teleconnections is the influence of an external driver on both observables that are correlated, even if they

are dynamically independent.

How can we then measure this dependence? Answering this question is difficult as discussed by Clive Granger in his Nobel15

lecture in 2003 (Granger , 2003). One way proposed by Granger (1969) is to use the information on the predictability of the

system with or without the influence of the observable expected to be the cause. In this context two forecasting models should

be developed one with and the other without the observable investigated as predictor (Mosedale et al., 2006; Mokhov et al ,

2011; Tirabassi et al , 2015). A drawback of the approach is precisely the necessity to build such a forecasting model. Moreover

as discussed in details in the supplementary material of Sugihara et al (2012), the approach can lead to ambiguous results20

when applied to nonlinear deterministic dynamical systems. Another approach based on information flow is very appealing but

finding a good estimator for analyzing real data is difficult, although considerable progress have been made recently (Liang

and Kleeman , 2005; Runge et al , 2012; Liang , 2014, 2015).

A very powerful alternative proposed by Sugihara et al (2012) is the Convergent Cross Mapping method (CCM) which is a

method suitable for nonlinerar deterministic dynamical systems as it is based on analogs of the current state. This method has25

also been tested with success when nonlinear dynamical systems are affected by noise (Mønster et al , 2017), and in coupled

dynamical systems in order to identify the leading element of the coupling (BozorgMagham et al , 2015). It has also been

recently used to disentangle the link between galactic cosmic rays and the variations of the global temperature (Tsonis et al ,

2015) or between environmental drivers and influenza (Deyle et al , 2016).

In the present work, we address the question of causality dependence between the Tropical Pacific, the North Atlantic and30

the North Pacific coupled ocean-atmosphere dynamics at monthly to interannual time scales, in order to clarify the remote

role of these different climate sub-systems on the others. This will be done by first constructing low-order systems based on

a projections on a few Fourier modes that are assumed to dominate the dynamics in each of the basins. This projection has

already been applied successfully in the context of the analysis of the coupling between the ocean and the atmosphere over the

North Atlantic (Vannitsem and Ghil , 2017). Once these projections are identified, the time series associated with each of these35
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modes can be analyzed using the CCM approach. The specific choice of regions and Fourier modes, although reasonable, is

however a little arbitrary. The current analysis is therefore a proof-of-concept on investigating the question of causality in the

Earth System dynamics using the CCM approach, keeping in mind that an extension of the analysis to other regions and phase

space representations should be explored.

Section 2 will introduce the technique of Convergent Cross Mapping (CCM). In Section 3, the datasets and the projections5

used are described. The datasets are coming from reanalyses performed at the European Center for Medium Range Weather

Forecasts (ECMWF). The results on the application of CCM on these data are then presented in Section 4. The main conclusions

and future works are outlined in Section 5.

2 Convergent Cross Mapping (CCM)

Two observables recorded as a function of time, say X(t) and Y (t), are said causally linked if they are coming from the same10

dynamical system. In this case a two-way dependence relation is present between them and the information gathered from one

of the observable should, in principle, provide information on the other one. This type of dependence should not be confused

with the case where a dynamical system is forced by an external driver, in which case there is a one-way dependence from

the driver to the dynamical system. Disentangling the nature of this coupling is crucial in science when one is interested in

describing the dynamics of the system under investigation. This is particularly true when the system is very complicated as the15

Earth System.

Several approaches have been developed in the recent past that allow for analyzing the dependences between time series.

Granger Causality (GC) analysis is a celebrated approach based on the evaluation of the predictability of a variable in the

absence or the presence of an hypothetical driver (Granger , 1969). As indicated in Sugihara et al (2012), its application is

restricted to separable systems for which the driver can be effectively removed. In nonlinear deterministic dynamical systems in20

which all the variables are interconnected, the GC approach does not provide the desired answer on the effective link between

the variables, see the examples given in Sugihara et al (2012). These authors therefore propose to approach the problem of

causality in systems governed by deterministic dynamical systems by considering that the variables are indeed sharing the same

attractor and that these variables can therefore provide information on each other. In addition, if an external driver is forcing

the dynamical system under interest, the knowledge on the dynamics of the system can provide information on the driver, but25

not the opposite.

The original method proposed by Sugihara et al (2012) is based on the Takens’ reconstruction theorem: Given a time delay

τ , an embedding dimension E and the time series of a variable X , reconstructed attractor, Mx, can be built. Each variable of

that phase space corresponds to a given delay, and each point of the reconstructed attractor is obtained from the time series

as follows X(t) =X(t),X(t− τ),X(t− 2τ), ...,X(t− (E− 1)τ). For each phase space point, X(t), of the reconstructed30

attractor, a set of close points are selected, called analogs, based on a distance, typically the Euclidian distance. Since these are

close to X(t), they should share some dynamical properties that can be exploited to make predictions starting from the current
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situation at time t. This set of analogs can also be used to recover the value of another variable, say Y (t), contemporary to

X(t). The idea is to use the analogs found around X(t), to predict the expected variable Y (t), denoted Ŷ (t), as

Ŷ (t) =
E+1∑

i=1

Yi×wi (1)

using weights defined as,

wi =
exp( di

mindj
)

∑
i exp( di

mindj
)

(2)5

where the distances di are associated with the E+ 1 analogs obtained for the variable X (Tsonis et al , 2015), and Yi are the

values of Y contemporary to the ith analog on Mx. The number of analogs, E+ 1, is chosen such that one can form a simplex

around the point X(t). The quantity mindj denoted the minimum of dj of the E+ 1 analogs.

The dynamical relation between the variables X and Y can then be studied by comparing the actual value Y (t) to the

predicted value Ŷ (t) obtained using analogs of X(t) on the Mx attractor. Repeting this method starting from different times t,10

the correlation coefficient between Y (t) and Ŷ (t) can be computed:

ρ=
cov(Y, Ŷ )
σY σŶ

(3)

where cov(., .) denotes the covariance between the variables Y (t) and Ŷ (t), and σY and σŶ are their standard deviations.

The values of ρ are thus lying between −1 and 1, and is also known as the Pearson correlation coefficient. High values of ρ

indicate that the estimation of Y is good. However, this correlation does not necessarily mean that there is causality, as already15

emphasized in the Introduction. For instance, there could be a confounding factor Z that influences both X and Y in the same

manner. In that case, X and Y would behave similarly, and therefore, there will be a correlation between the two (Sugihara et

al , 2012).

To solve that problem, the method as described above can be repeated for increasing lengths of the time series, L. For each

sub-time-series, an attractor is build, from which analogs can be isolated and the correlation coefficient can be computed. If Y20

influences X , the effect of Y will be present in the reconstructed attractor Mx. By increasing the length L, more information

on the time series of X are gathered, and therefore the selection of the analogs on the attractor is better. If there is a causality

relation of Y on X , ρ will increase with L. On the contrary, if there is no causality, the added information on the variable X

will not give any information regarding Y , and the correlation coefficient will not increase with L. This provides a criterion on

the role of a variable Y on X .25

The CCM method requires the knowledge of the embedding dimension and the time delay necessary for reconstructing the

attractor Mx from the time series. As already known for a while the classical techniques to build this attractor need very long

time series that are often not accessible (Van den Dool , 1994; Nicolis , 1998). A practical alternative is to build an attractor

from a set of variables that are relevant to the dynamics from an expert evaluation. In such a case a set of E =N observables

as entries of X can be used to represent the attractor (in fact a projection of the full attractor in a subspace of N variables),30
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and the analogs around a specific phase space point X(t) can then be found in the same way as above. These analogs can be

used to define the weights (2) that are in turn used to predict Y (t). The influence of Y on X can then be inferred by computing

Eq (1). In order to see what is the impact of the modification of the approach it has been applied in the context of a well

known system, a coupled ocean atmosphere model of 36 ordinary differential equations developed in Vannitsem (2015), for

which some results have been reported in Appendix A. The analysis demonstrates that the approach is able to isolate important5

dependences between observables. Note also that when the series are much shorter than discussed in Appendix A, correlation

can also be negative indicating that the total length of the series can have an important impact.

The CCM method with this modification will be applied on the data presented in the next Section.

3 Time series based on reanalysis datasets

The dynamics of the coupled ocean-atmosphere system has been recently investigated by adopting a novel approach which10

finds its roots in the low-order modelling of such dynamical systems (Vannitsem , 2015; Vannitsem et al , 2015). It consists

at projecting key fields of the large-scale dynamics of the system on a few sets of modes that are dominating its dynamics.

In Vannitsem and Ghil (2017), the coupling between the ocean and the atmosphere over the Atlantic has been investigated

by projection the geopotential at 500 hPa on the mode F1 =
√

2cos(πy/Ly), and the ocean potential temperature field at a

certain depth (close to the surface) and the sea surface height on the mode φ2 = 2sin(πx/Lx)sin(2πy/Ly). Note the sea15

surface height is a proxy for the upper-layer ocean streamfunction field. F1 is one of the largest-scale Fourier modes of the

atmospheric field that is confined in an x-periodic β-channel with free-slip boundary conditions in the y-direction, while

Φ2 is one of the dominant Fourier modes compatible with free-slip boundary conditions in a rectangular, Lx×Ly closed

basin. The latter mode corresponds to the typical structure of a double gyre in such a closed ocean basin. We thus expect the

projection of the geopotential on F1(x,y) to provide information on the intensity of the large-scale eastward zonal transport20

in the atmosphere, while the projection of the temperature and streamfunction field in the ocean on φ2(x,y) will allow us to

evaluate the strength of the dominant component of the meridional gradient of temperature and the intensity of the double-gyre

dynamics in the ocean, respectively. The domain chosen in terms of the spherical coordinates is 55◦W ≤ λ≤ 15◦W, 25◦N

≤ φ≤ 60◦N, with (x= λ−λ0,y = φ−φ0); here (λ0 = 305◦,φ0 = 25◦) and (Lx = 40◦,Ly = 35◦). Note that the domain

used here is the same as in Vannitsem and Ghil (2017) but a typographical error on the domain of projection is reported in25

the supplementary material of Vannitsem and Ghil (2017). The time series obtained for the North Atlantic will be denoted

NAΨa,1 ,NAθo,2 ,NAηo,2 for the projection the geopotential at 500 hPa on the mode F1, the ocean potential temperature field at

5 meter deep and the sea surface height on the mode φ2, respectively.

A similar approach can be performed for the North Pacific, except that the domain is now larger in the zonal direction. In

this case the spherical-rectangle domain is (165◦E–225◦E, 25◦N–60◦N). The series obtained for this domain will be denoted30

NPΨa,1 ,NPθo,2 ,NPηo,2 as for the North Atlantic. Note that for both basins the projected time series contains the dominant

part of the variability. It however does not preclude that other important processes are missing in the description here. Further

analysis with more modes are certainly worth doing in the future.
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For the Tropical Pacific one can wonder what kind of variables should be considered. First a dominant variable in the Tropical

Pacific is the mean temperature of the upper ocean layer, known to be associated with the dynamics of El-Niño. It is also known

that the Walker circulation is considerably affected by the upper layer ocean temperature, and vice versa (Philander , 1990). Let

us therefore consider for now the mean ocean potential temperature in the NINO3.4 region, known to have strong correlation

with the variability in the North Atlantic region (Brönnimann , 2007). For the characterization of the Walker circulation, the5

zonal wind at 500 hPa and 200 hPa over the same domain are chosen. They provide some information on the position and the

strenght of the Walker circulation over the NINO3.4 region. The series obtained will be denoted as NIU200,NIU500,NIθo,av
.

Three different reanalyses datasets from the European Center for Medium-Range Weather Forecasting (ECMWF) are used.

The ERA-20C dataset provides a continuous reanalysis for the atmosphere of the 20th century which assimilates observations

from surface pressure and surface marine winds only. It is produced using the IFS model cycle Cy38r1 and detailed information10

can be found on the website of the ECMWF at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-20c, see

also the report on the quality of this reanalysis dataset (Poli et al , 2015). It covers the period 1900-2010.

The second dataset is the Ocean reanalysis ORAS4 obtained using the NEMO model. The ocean model is forced by the

heat, momentum and fresh water fluxes at the upper surface, and ocean observations. For the upper surface fluxes, the ERA40

reanalysis dataset is used from September 1957 to December 1988, then the ERA-Interim from January 1989 to December15

2009. In 2010, these fluxes are provided by the ECMWF operational analyses. For the SST and ice products, ERA40 (until

December 1981) and Reynolds dataset are used. Finally observational data within the ocean are the temperature and salinity

profiles from September 1957 to December 2010, and the sea level anomalies from November 1992 onward. More information

on the datasets used and the model configuration can be found at tps://www.ecmwf.int/en/research/climate-reanalysis/ocean-

reanalysis, and more information on the quality of this product can be found in Balmaseda et al. (2013). The period covered20

by the dataset used in the present study is fixed from January 1958 to December 2010.

Finally, the third reanalysis dataset used is the ORA-20C which is a 10-member ensemble of ocean reanalysis covering

the 20th century using atmospheric forcing from ERA-20C. This dataset is more homogeneous than the ORAS4 since the

atmospheric forcing is consistent during the whole 20th century. As recognized in de Boisséson and Balmaseda (2016), the

uncertainty is large during the first part of the century before the assimilation process constrains all the members of the ensemble25

to a state more consistent with other reanalysis products. One can suspect that this dataset to be better than the ORAS4 for the

dynamics of the ocean during the second part of the century since the state of the ocean has got some time to adjust toward

a representative climatology during the first half. We will therefore use data from January 1958 consistently with the ORAS4

dataset to December 2009, the final date of data availability at the time when the present work has been conducted.

So the atmospheric data from the ERA-20C that will be used in the present work will cover the same periods as the ones30

fixed for the ORAS4 and the ORA-20C, respectively. All data used are monthly values.

The different time series obtained by projecting the fields on the 2 Fourier modes are grouped by zones, 3 for the North

Atlantic (containing one series for the atmosphere and two series for the ocean), three for the North Pacific (as for the North

Atlantic), and three for the Tropical Pacific (two series for the atmosphere and one series for the ocean). The nine time series

based on the reanalyses ERA-20C and ORA-20C are displayed in Fig. 1 for the three regions. The three series in each zone35
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Figure 1. Monthly time series of the projections of the Atlantic, Pacific and Tropical fields on the dominant modes of the dynamics, as

obtained from the ocean reanalysis ORA-20C and the ERA-20C atmosphere reanalysis. Top row from left to right, the geopotential at 500

hPa projected on F1, the ocean temperature at 5 meters deep projected on φ2, and the sea surface height projected on φ2 for the Atlantic.

Middle row, as for the top row but for the Pacific. Bottom row from left to right, zonal velocity at 200 hPa and 500 hPa, and the ocean

temperature at 5 meters deep averaged over the NINO3.4 region. All time series are standardized.

will constitute a 3-dimensional projection of the local coupled ocean-atmosphere dynamics. The same projections but using

the ERA-20C and the ORAS4 are displayed in Fig. 2.

Let us first briefly investigate the covariance structure of these time series. Table 1 displays the covariances between the

different time series of Figs. 1 and 2, with on the left side of each column the covariances for the series of Fig. 1, while on

the right side, the ones corresponding to series of Fig. 2. There are a few remarkable correlations. First the ones between the5

atmospheric fields NAΨa,1 , NIU200, NIU500 and NPΨa,1 , suggesting that some key observables of the global dynamics have

been selected. The ocean temperature modes,NAθo,2 ,NPθo,2 andNIθo,av are also highly correlated. Interestingly theNPΨo,2

is anti-correlated withNIθo,av. Another remarkable result is that the transport in the North Pacific,NPΨo,2 , is highly correlated

with the transport in the North Atlantic,NAΨo,2 , although different amplitudes are found for the two ocean reanalysis datasets.
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Figure 2. Monthly time series of the projections of the Atlantic, Pacific and Tropical fields on the dominant modes of the dynamics, as

obtained from the ocean reanalysis ORAS4 and the ERA-20C atmosphere reanalysis. Top row from left to right, the geopotential at 500 hPa

projected on F1, the ocean temperature at 5 meters deep projected on φ2, and the sea surface height projected on φ2 for the Atlantic. Middle

row, as for the top row but for the Pacific. Bottom row from left to right, zonal velocity at 200 hPa and 500 hPa, and the ocean temperature

at 5 meters deep averaged over the NINO3.4 region. All time series are standardized.

Some other correlations are much less robust when one looks at the two different ocean datasets, in particular associated with

the transport and the ocean temperature over the North Atlantic (second and third column in Table 1). These differences should

be associated with the different approaches to force the ocean model, and reflect important uncertainties in reconstructing the

past evolution of the Earth System.

Important correlations appear in the datasets explored, suggesting that common information are present in the different5

coupled ocean-atmosphere basins discussed here. These correlations are presumably highly dependent on the seasonal cycle

affecting the Earth system. Further analysis by removing the seasonal signal could be done to clarify the correlations between

the anomalies found in each basins. We will not, however, go in that direction in the present work since there are several ways

to do it and since the seasonal signal is part of the dynamics itself. It suffices here to recognize that links exist between these
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Table 1. Correlation coefficients between the different variables for the two reanalysis datasets. On the left: ORAS4, ERA-20C; and on the

right: ORA-20C, ERA-20.

NAΨa,1 NAθo,2 NAηo,2 NIU200 NIU500 NIθo,av NPΨa,1 NPθo,2 NPηo,2

NAΨa,1 1 0.22|0.12 0.12|0.05 0.45|0.45 0.45|0.46 −0.10|−0.15 0.41|0.41 −0.18|−0.14 0.02|−0.03

NAθo,2 0.22|0.12 1 0.52|0.41 −0.06|−0.20 −0.03|−0.17 −0.13|−0.10 0.07|−0.05 0.39|0.42 0.28|0.29

NAηo,2 0.12|0.05 0.52|0.41 1 −0.17|−0.06 −0.19|−0.13 0.07|0.06 −0.09|−0.01 0.07|0.10 0.25|0.55

NIU200 0.45|0.45 −0.06|−0.20 −0.17|−0.06 1 0.82|0.83 −0.48|−0.58 0.49|0.50 −0.04|−0.04 0.07|0.07

NIU500 0.45|0.46 −0.03|−0.17 −0.19|−0.12 0.82|0.83 1 −0.40|−0.47 0.50|0.51 −0.08|−0.07 −0.08|−0.04

NIθo,av −0.10|−0.15 −0.13|−0.10 0.07|0.06 −0.48|−0.58 −0.40|−0.47 1 −0.05|−0.12 −0.38|−0.40 −0.22|−0.21

NPΨa,1 0.41|0.41 0.07|−0.5 −0.09|−0.01 0.49|0.50 0.50|0.51 −0.05|−0.12 1 −0.01|−0.01 0.25|0.18

NPθo,2 −0.18|−0.14 0.39|0.43 0.07|0.10 −0.04|−0.04 −0.08|−0.07 −0.38|−0.40 −0.01|−0.01 1 0.57|0.58

NPηo,2 0.02|−0.03 0.28|0.29 0.25|0.55 0.07|0.07 −0.08|−0.04 −0.22|−0.21 0.25|0.18 0.57|0.58 1

basins, whose nature will be clarified by using the CCM algorithm discussed in Section 2. It will be shown that the annual cycle

is also affecting the CCM results and two different ways to disentangling its role on the causality analysis will be proposed.

4 Results of the application of Convergent Cross Mapping

4.1 Reanalyses: ERA-20C/ORA-20C

Let us start the analysis by investigating the CCM for the series displayed in Fig. 1. In Panel (a) of Fig. 3, the correlation ρ(L)5

of the predicted variable Ŷ with the actual solution Y is shown for the three variables of the Tropical Pacific. These predicted

variables are obtained by building analogs in the North Atlantic as described in Section 2. Note that a 95% confidence interval

is provided based on the Fisher Z-transform test based on resampling a certain number of times the samples of length L,

indicating that the influence of the two atmospheric Tropical series is significant. This confidence interval for large L is larger

than for smaller values due to the fact that we are reaching the limit of the number of data points.10

An increase of the correlation is found as a function of L, suggesting that the North Atlantic depends on the two large-scale

atmospheric variables selected for the Tropical Pacific. The correlation for the ocean temperature of the Tropical region is

however negative. As already mentioned previously this feature may occur when the time series is too short and when there is

no significant coupling between the variables. This suggests that the prediction of the Tropical temperature based on analogs

over the Atlantic are very poor, and therefore indicates the absence of influence of the Tropical ocean temperature. So the15

dominant influence is from the zonal flows in the atmosphere, associated with the dynamics of the Walker circulation.

The influence of the three variables of the North Pacific on the North Atlantic is very important as shown in Panel (b) with

the three CCM increasing and significantly positive. The North Pacific ocean dynamics has a larger influence than the North

Pacific ocean temperature on the Atlantic, as reflected by the larger amplitude of the CCM values.

The impact of the Atlantic region on the Tropical Pacific and The North Pacific are displayed in Panels (c) and (d). All20

CCM values of Panel (c) are almost flat as a function of L suggesting that even when it is positive (very significant for

9

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2018-3
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 15 January 2018
c© Author(s) 2018. CC BY 4.0 License.



-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100  200  300  400  500  600  700

ρ
(L

)

L

(a)

NIU200 ==> North Atl
NIU500 ==> North Atl 
NIΘo,av

 ==> North Atl

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100  200  300  400  500  600  700

ρ
(L

)

L

(b)

NPφa,1
 ==> North Atl

NPΘo,2
 ==> North Atl

NPηo,2
 ==> North Atl

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100  200  300  400  500  600  700

ρ
(L

)

L

(a)(c)

NAφa,1
 ==> Trop Pac

NAΘo,2
 ==> Trop Pac

NAηo,2
 ==> Trop Pac

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100  200  300  400  500  600  700

ρ
(L

)

L

(d)

NPφa,1
 ==> Trop Pac

NPΘo,2
 ==> Trop Pac

 NPηo,2
 ==> Trop Pac

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100  200  300  400  500  600  700

ρ
(L

)

L

(e)

NAφa,1
 ==> North Pac

NAΘo,2
 ==> North Pac

NAηo,2
 ==> North Pac

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100  200  300  400  500  600  700

ρ
(L

)

L

(f)

NIU200 ==> North Pac
NIU500 ==> North Pac 
NIΘo,av

 ==> North Pac

Figure 3. CCM as a function of the length L of the samples, as obtained from the monthly time series displayed in Fig. 1 for the reanalyses

ERA-20C and ORA-20C. Each line with symbols corresponds to the influence of one variable on a specific coupled ocean-atmosphere basin.

The specific variables are denoted in the caption corresponding to each line in each Panel.
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the geopotential ar 500 hPa), there is no dependence of the Tropical Pacific on the dynamics over the Atlantic. A slightly

different picture emerges for the influence of the North Pacific on the Tropical Pacific, with a slightly increasing CCM for the

Geopotential at 500 hPa over the North Pacific suggesting an influence of the upper-air dynamics over the North Pacific on the

Tropical Pacific. Note that sometimes it is difficult to have a clearcut answer on the increase or not of a correlation as a function

of L. There is a degree of arbitrariness that should be alleviated using other approaches as the ones that will be discussed later5

based on the temporal averaging or based on surrogates.

In Panels (e) and (f), the CCM values characterizing the influence of the North Atlantic (e) and Tropical Pacific (f) on the

North Pacific, are displayed. A clear increase of CCM associated with the influence of the North Atlantic ocean dynamics on the

North Pacific is found (Panel (e)). The CCM values for the two other variables are also slightly increasing with L, suggesting a

dependence of these two observables on the North Pacific. Interestingly the influence of the Geopotential of the North Pacific on10

the North Atlantic (Panel (b)) is more important than the one from the North Atlantic to the North Pacific since the correlation

is higher. This assymetry looks reasonable since the dominant flow is eastward in the Northern extratropics. Finally Panel (f)

suggests that the atmospheric zonal flow over the Tropical Pacific influences the North Pacific dynamics, but not the ocean

temperature.

To summarize, the analysis reveals that: (i) The upper-air Tropical Pacific dynamics and the North Pacific ocean and at-15

mosphere dynamics influence the dynamics over the North Atlantic; (ii) the upper-air North Pacific dynamics influences the

Tropical Pacific; and (iii) the North Atlantic ocean dynamics and the upper-air Tropical Pacific dynamics influence the dynam-

ics over the North Pacific. These results seems to support the view of several authors, e.g. Sardeshmukh and Hoskins (1988);

Alexander et al (2002); Lau (2016), that there is an atmospheric bridge dependence from the Tropical Pacific to the North

Atlantic, via the North Pacific. Furthermore, a dependence between the North Pacific and the North Atlantic emerges, which is20

mostly oriented from the North Pacific to the North Atlantic since the correlations are larger in Panel (b) than in Panel (e) for

the atmospheric variable, in line with the findings of Drouard et al (2015). But another very interesting dynamical signature

emerges suggesting that the North Pacific and the North Atlantic ocean dynamics are dependent to each other. A possible

candidate for this coupling is the thermohaline planetary circulation that affects both regions of the globe.

To disentangle the importance of the thermohaline circulation which displays a variability on very long time scales, one can25

investigate the dependence properties when longer time scales are considered. An average of the data set has been performed

using a sliding window of 12 months. This approach allows for removing most of the impact of the annual signal, while keeping

a number of data points large enough to perform the CCM analysis. Larger windows could be used but it will introduce very

long time correlations that could penalize the selection of analogs since one needs analogs that are sufficiently uncorrelated in

time. The results are displayed in Fig. 4. A first remarkable result is the fact that for a one-year average, the mutual dependence30

of the dynamics over the North Atlantic and Pacific is dominated by the ocean dynamics (see Panels (b) and (e)). The CCM

values of the other observables in these two Panels are flat, and close or below 0. At the same time new dependences emerge

between the North Pacific and the Tropical Pacific (Panel (d)), in particular for the ocean transport. This further supports

the conjecture that the three regions are coupled via the large scale global ocean dynamics. This is presumably linked with
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Figure 4. CCM as a function of the length L of the samples, as obtained from the series of Fig. 1 after averaging over a sliding window of

12 months for the reanalyses ERA-20C and ORA-20C. Each line with symbols corresponds to the influence of one variable on a specific

coupled ocean-atmosphere basin. The specific variables are denoted in the caption corresponding to each line at each Panel.
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the thermohaline circulation, but further analyses using additional observables and Tropical regions are needed in order to

disentangle this point. This will be the subject of a future work.

Another very important finding in Fig. 4 is the fact that CCM values are now close to 0 (and do not display any dependence

in L) for the influence of the Tropical Pacific on the North Atlantic, and vice versa (Panels (a) and (c)). It suggests that the

dependence between these two regions is confined to time scales smaller than a year. One can therefore wonder whether this5

dependence is associated purely to the annual cycle or to some specific Tropical events like El-Niño or La-Niña, or in other

words if it is mostly associated with the climatology of the Tropical Pacific or not.

To clarify this point, surrogate 3-dimensional attractors have been built by using the monthly means (averaged over the

different years) on which random anomalies with the appropriate variance are superimposed. These new attractors are then

used to predict the true variable of interest Y . Figure 5 displays the corresponding Panels that should be compared to Fig. 3.10

Two different random surrogates have been built, implying that two curves are displayed in each Panel for each variable, Y .

The first remarkable result is that the CCM values of the ocean dynamics variables of Panels (b) and (e) are now flat and close

to 0, suggesting that the CCM values for the transport in the two North ocean basins found in Fig. 3 are indeed indicating a

dynamical coupling between the two basins beyond the annual climatological variations. Also in Panel (b), the CCM values

for the influence of the North Pacific series (ocean temperature and Geopotential at 500 hPa) on the surrogate attractor of the15

Atlantic considerably decrease, suggesting the importance of the influence of the North Pacific on the North Atlantic beyond

the annual climatological influence.

However when looking at the results in Panel (a), the CCM values based on the use of the surrogate attractors are very

close to the one obtained with the actual attractors. This surprising feature suggests that there is no influence between the

Tropical Pacific and the North Atlantic beyond the annual climatological variations. Or in other words that the Tropical Pacific20

variability does not influence the anomalies over the North Pacific. This has a very strong implication in the sense that there is

no dynamical link between an event like El Niño or La Niña and the anomalies over the North Atlantic. A similar picture is

found for the influence of the Tropical Pacific on the North Pacific as illustrated in Panel (f). In summary, in the limit of the

data at our disposal, the analysis suggests that the anomalies associated with the dynamics over the North Atlantic and North

Pacific cannot be inferred based on the variability of the observables we have used so far in the Tropical Pacific.25

Note that the previous analysis is made for all seasons and without distinctions between certain types of events, say strong

El-Niño events, as it is usually done when analyzing the effect of ENSO over other regions of the globe, e.g. Brönnimann

(2007). Such a split between seasons and/or events are worth performing, but the time series are already short and the selection

of certain events will reduce considerably the statistics. The absence of link between the Tropical Pacific and the North Atlantic

coupled dynamics could also reflect the non-stationary properties of the teleconnections between the North Atlantic and the30

Tropical Pacific as documented in López-Parages et al (2016); Johnson and Kosaka (2016); Goss and Feldstein (2017) and

references therein. The analysis of long climate runs of state-of-the-art models with the approach used here would be very

useful in that respect.
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Figure 5. CCM as a function of the length L of the samples, as obtained from surrogate 3-dimensional attractors built by superimposing

random anomalies to the annual climatological cycle, based on the data from Reanalysis ERA-20C and ORA-20C. Two different surrogates

have been used. Each line with symbols corresponds to the influence of one actual variable (not a surrogate series) on a specific coupled

ocean-atmosphere surrogate attractor. The specific variables are denoted in the caption corresponding to each line in each Panel.

14

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2018-3
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 15 January 2018
c© Author(s) 2018. CC BY 4.0 License.



4.2 ERA-20C/ORAS4

Let us now consider the second ocean reanalysis, ORAS4, while keeping the same atmospheric reanalysis. This second inves-

tigation should allow us to clarify the robustness of our findings. Figure 6 shows the results of the computation of CCM that

should be compared with the results presented in Fig. 3. One remarkable feature is the absence of dependences between the

North Atlantic and the North Pacific for the ocean dynamics, see black full circles in Panels (b) and (e). This result considerably5

differs from the one obtained with the ORA-20C. Another important difference is a larger amplitude of the influence of the

Tropical Pacific ocean temperature on the North Pacific, and of the North Pacific observables on the North Atlantic. The other

dependences are more robust.

These results suggest that the dynamics within the ocean differs considerably between ORAS4 and ORA-20C as already

suggected by the covariances displayed in Table 1. These differences are probably due to (i) the fact that these reanalyses are10

obtained with different atmospheric forcing, specifically ORA-20C with ERA-20C and ORAS4 with different atmospheric

reanalysis products and (ii) to the fact that for ORA-20C the ocean model started beginning of 1900 while for ORAS4 it started

end of 1957. We should then expect that the ORA-20C reanalysis data set is more reliable since a more consistent atmospheric

forcing has been applied and the ocean model has got more time to equilibrate around its climate.

The investigation of the dependences for sliding averages over 12 months displayed at Fig. 7, also suggests a suppression of15

the dependences for most of the variables, at the exception of the one associated with the influence of the North Pacific ocean

temperature on the Tropical Pacific (Panel (d)). It is also remarkable that a dependence emerges of the North Atlantic ocean

dynamics on the North Pacific, but much weaker than for the other ocean reanalysis dataset.

5 Conclusions

The causality between the dynamics of three different coupled ocean-atmosphere basins, The North Atlantic, the North Pacific20

and the Tropical Pacific region, NINO3.4, has been explored using data from three different reanalyses datasets, the ORA-20C,

the ORAS4 and the ERA-20C. The approach used is the Convergent Cross Mapping developed by Sugihara et al (2012)

which allows to go beyond the classical teleconnection patterns and which provides a clear signature of the inter-dependences

between series or regions. The analysis reveals a few very important facts that should help in improving our understanding of

the remote influence of large-scale dynamical processes, and in particular the impact of the Tropical Pacific coupled dynamics25

on the extratropics:

– The Tropical Pacific coupled ocean-atmosphere dynamics does not seem to have an impact on the extratropics beyond the

annual climatological cycle. This very surprising result suggests that there is little hope to improve predictability in the

extratropics based on information on the variability in the Tropical Pacific. This result needs however more attention and

a thorough inspection of other datasets and long climate model runs in order to be confirmed. It is possible in particular30

that a more detailed analysis based on the selection of specific events, like strong El-niño or La-niña, will provide new

information on the interactions between the Tropical Pacific and the rest of the world, beyond the climatological annual
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Figure 6. CCM as a function of the length L of the samples, as obtained from the monthly time series displayed in Fig. 2 for the reanalyses

ERA-20C and ORAS4. Each line with symbols corresponds to the influence of one variable on a specific coupled ocean-atmosphere basin.

The specific variables are denoted in the caption corresponding to each line in each Panel.
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Figure 7. CCM as a function of the length L of the samples, as obtained from the series of Fig. 2 after averaging over a sliding window of 12

months for the reanalyses ERA-20C and ORAS4. Each line with symbols corresponds to the influence of one variable on a specific coupled

ocean-atmosphere basin. The specific variables are denoted in the caption corresponding to each line in each Panel.
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signal. But such an investigation needs considerably more data than the ones used in the present work and therefore calls

for the development of even longer coupled reanalyses, or the use of long climate model runs.

– The atmosphere over the North Pacific considerably influences the North Atlantic (beyond the climatological annual

signal), in agreement with the results found for instance in Drouard et al (2015).

– The inter-dependences between the North Atlantic and the North Pacific on longer time scales than a year seems to be5

important, and is probably related to the ocean dynamics on long time scales. One could conjecture that the thermohaline

circulation is responsible for this link. Additional analyses with longer data sets, with climate model runs, but also with

the analysis of additional basins like the Tropical Atlantic or the Indian Monsoon region are necessary to clarify this

role.

The present work has demonstrated the urgent necessity to go beyond the teleconnection patterns for the investigation of the10

interaction between the different components of the climate system, using tools recently developed in the context of nonlinear

sciences. Teleconnection patterns do provide information on a co-variability (which is an interesting information per se), but not

of the influence of a region an another through a dynamical coupling. A common forcing can for instance induce a correlation

between two observables even if these are perfectly independent in a dynamical sense.

New analyses will be performed along the lines drawn above, in particular in climate model runs. Several long control15

climate runs of CMIP5 models are available and can be analyzed in the same perspective as in the present work, in order in

particular to evalute the impact of ENSO on the dynamics of the North Pacific and the North Atlantic.

More observables should also be considered such as projections on additional Fourier modes, or by using projections on a

few Empirical Orthogonal Functions. These analyses should allow to evaluate the robustness of the present results.

Code and data availability. The code for CCM and the time series are available upon request to the authors. The data will be made available20

on zenodo.org once the manuscript is accepted for discussion.

Appendix A: CCM applied to an idealized model

To test the CCM technique described in Section 2, we use a dynamical system recently developed in Vannitsem (2015). It

consists of a set of 36 ordinary differential equations representing the large scale dynamics of a coupled ocean-atmosphere

system at midlatitudes. The equations are described in Vannitsem (2015) and in its supplementary material. The atmospheric25

model is based on the vorticity equations of a two-layer, quasi-geostrophic flow defined on a β-plane. The ocean dynamics is

based on the reduced-gravity, quasi-geostrophic shallow-water model on a β-plane. For the ocean, it is assumed that temper-

ature is a passive scalar transported by the ocean currents, but the oceanic temperature field displays strong interactions with

the atmospheric temperature through radiative and heat exchanges.
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All fields are developed in Fourier series on a β-plane as,

δTo =
8∑

i=2(and6=5)

Θo,iφi, Ψo =
8∑

i=1

Ψo,iφi, (A1)

ψa =
10∑

i=1

Ψa,iFi, δTa =
10∑

i=1

Θa,iFi (A2)

(A3)

where Θa,i = (ψ1
a,i−ψ3

a,i)/2 and Ψa,i = (ψ1
a,i +ψ3

a,i)/2, with ψ1 and ψ3 the streamfunctions in the upper and lower layer5

of the atmosphere. Ψo is the streamfunction field in the ocean. δTo and δTa are temperature anomaly field with respect to

spatially averaged reference temperatures. The modes φi used for the ocean are compatible with free-slip boundary conditions

in a closed basin, while Fi are modes used for the atmospheric fields compatible with free-slip boundaries in the meridional

direction and periodic boundaries in the zonal direction, see also the paper Vannitsem et al (2015).

The CCM analysis is performed on the solutions generated by the model with the same parameters as in Fig. 3 of Vannitsem10

(2015) with a surface friction coefficient C = 0.006 kg m−2 s−1. The model is forced with seasonal variations of the solar

input as discussed in Vannitsem (2015), and the solutions are averaged over one month (1/12 of the 365 days of the model

year). The three variables used for building the attractor and the analogs are (Ψa,1,Θo,2,Ψo,2) as for the North Atlantic and

North Pacific datasets discussed in Section 3. Then several other variables are used to see if they have causality relations with

the three variables used to build the attractor. The length of the time series is L= 6000 months.15

The results are shown in Fig. A1 for different variables and also for a sliding window of 12 months at Panels (e) and (f). As it

can be seen in Panels (a) and (b) the only atmospheric variable (explored so far) influencing the dynamics of (Ψa,1,Θo,2,Ψo,2)

is Θa,1, since the correlation is high and increases as a function of L. This variable is strongly linked to the dynamics of Ψa,1

in the equations of the model, since it is the only one influencing (linearly) the evolution of Ψa,1. The others do not seem to

have a strong influence. In Panels (c) and (d), the impact of some ocean variables is illustrated with no apparent influence of20

Ψo,5 and Θo,3. But all other variables have different levels of influence with a clear increase of the correlation as a function of

L.

Finally, in Panels (e) to (h) the impact of using a sliding average is illustrated. First the CCM plotted in Panel (f) indicates

that the influence of Θa,1 is not removed, indicating its essential role on the dynamics at different time scales of motion. Second

the influence of the ocean modes which were found to play a role at monthly time scales is further enhanced.25

This brief analysis of a low-order system based on the CCM algorithm described in Section 2 indicates that it is a powerful

tool to isolate the influence of certain observables on others in the system. This allows us to proceed with this approach in the

context of the datasets presented in Section 3. The analysis also opens new questions on the role of the different variables in

this low-order model. This problem is out of the scope of the present work but is worth pursuing in the future.
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Figure A1. CCM as a function of the length L of the samples, as obtained from monthly time series of the low-order coupled ocean-

atmosphere model integration. Panels (a) to (d) displays the values for the influence of a set of model variables on (Ψa,1,Θo,2,Ψo,2)

at monthly time scale. Panels (a) to (d) displays the values for the influence of a set of model variables on (Ψa,1,Θo,2,Ψo,2) after the

application of a sliding average over 12 months. Each line with symbols corresponds to the influence of one variable on (Ψa,1,Θo,2,Ψo,2).

The specific variables are denoted in the caption corresponding to each line in each Panel.
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